Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1382512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633987

RESUMO

Introduction: The significance of automated drug design using virtual generative models has steadily grown in recent years. While deep learning-driven solutions have received growing attention, only a few modern AI-assisted generative chemistry platforms have demonstrated the ability to produce valuable structures. At the same time, virtual fragment-based drug design, which was previously less popular due to the high computational costs, has become more attractive with the development of new chemoinformatic techniques and powerful computing technologies. Methods: We developed Quantum-assisted Fragment-based Automated Structure Generator (QFASG), a fully automated algorithm designed to construct ligands for a target protein using a library of molecular fragments. QFASG was applied to generating new structures of CAMKK2 and ATM inhibitors. Results: New low-micromolar inhibitors of CAMKK2 and ATM were designed using the algorithm. Discussion: These findings highlight the algorithm's potential in designing primary hits for further optimization and showcase the capabilities of QFASG as an effective tool in this field.

2.
J Chem Inf Model ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668753

RESUMO

The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibility metrics but suffer from a slow sampling procedure. We propose a novel adversarial generative framework, COSMIC, that shows comparable generative performance but provides a time-efficient sampling and training procedure. Given a molecular graph and random noise, the generator produces a conformation in two stages. First, it constructs a conformation in a rotation and translation invariant representation─internal coordinates. In the second step, the model predicts the distances between neighboring atoms and performs a few fast optimization steps to refine the initial conformation. The proposed model considers conformation energy, achieving comparable space coverage, and diversity metrics results.

3.
Eur J Med Chem ; 270: 116390, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604096

RESUMO

Protein tyrosine phosphatases PTPN2 and PTPN1 (also known as PTP1B) have been implicated in a number of intracellular signaling pathways of immune cells. The inhibition of PTPN2 and PTPN1 has emerged as an attractive approach to sensitize T cell anti-tumor immunity. Two small molecule inhibitors have been entered the clinic. Here we report the design and development of compound 4, a novel small molecule PTPN2/N1 inhibitor demonstrating nanomolar inhibitory potency, good in vivo oral bioavailability, and robust in vivo antitumor efficacy.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
4.
Nat Biotechnol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459338

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.

5.
Bioorg Med Chem ; 103: 117662, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493730

RESUMO

Inhibition of the low fidelity DNA polymerase Theta (Polθ) is emerging as an attractive, synthetic-lethal antitumor strategy in BRCA-deficient tumors. Here we report the AI-enabled development of 3-hydroxymethyl-azetidine derivatives as a novel class of Polθ inhibitors featuring central scaffolding rings. Structure-based drug design first identified A7 as a lead compound, which was further optimized to the more potent derivative B3 and the metabolically stable deuterated compound C1. C1 exhibited significant antiproliferative properties in DNA repair-compromised cells and demonstrated favorable pharmacokinetics, showcasing that 3-hydroxymethyl-azetidine is an effective bio-isostere of pyrrolidin-3-ol and emphasizing the potential of AI in medicinal chemistry for precise molecular modifications.


Assuntos
Azetidinas , Neoplasias , Humanos , Reparo do DNA , Azetidinas/química
6.
Bioorg Chem ; 146: 107285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547721

RESUMO

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Assuntos
Quinases Ciclina-Dependentes , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Descoberta de Drogas
7.
J Chem Inf Model ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404138

RESUMO

PandaOmics is a cloud-based software platform that applies artificial intelligence and bioinformatics techniques to multimodal omics and biomedical text data for therapeutic target and biomarker discovery. PandaOmics generates novel and repurposed therapeutic target and biomarker hypotheses with the desired properties and is available through licensing or collaboration. Targets and biomarkers generated by the platform were previously validated in both in vitro and in vivo studies. PandaOmics is a core component of Insilico Medicine's Pharma.ai drug discovery suite, which also includes Chemistry42 for the de novo generation of novel small molecules, and inClinico─a data-driven multimodal platform that forecasts a clinical trial's probability of successful transition from phase 2 to phase 3. In this paper, we demonstrate how the PandaOmics platform can efficiently identify novel molecular targets and biomarkers for various diseases.

8.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342078

RESUMO

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Assuntos
Metionina Adenosiltransferase , Neoplasias , Humanos , Sítio Alostérico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Mutação , S-Adenosilmetionina/metabolismo
9.
J Med Chem ; 67(2): 1393-1405, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38189253

RESUMO

Stabilization of hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase domain enzymes (PHDs) represents a breakthrough in treating anemia associated with chronic kidney disease. Here, we identified a novel scaffold for noncarboxylic PHD inhibitors by utilizing structure-based drug design (SBDD) and generative models. Iterative optimization of potency and solubility resulted in compound 15 which potently inhibits PHD thus stabilizing HIF-α in vitro. X-ray cocrystal structure confirmed the binding model was distinct from previously reported carboxylic acid PHD inhibitors by pushing away the R383 and Y303 residues resulting in a larger inner subpocket. Furthermore, compound 15 demonstrated a favorable in vitro/in vivo absorption, distribution, metabolism, and excretion (ADME) profile, low drug-drug interaction risk, and clean early safety profiling. Functionally, oral administration of compound 15 at 10 mg/kg every day (QD) mitigated anemia in a 5/6 nephrectomy rat disease model.


Assuntos
Anemia , Inibidores de Prolil-Hidrolase , Insuficiência Renal Crônica , Ratos , Animais , Prolil Hidroxilases , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Anemia/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Administração Oral , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
10.
J Med Chem ; 67(1): 420-432, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38146659

RESUMO

Breast and gynecological cancers are among the leading causes of death in women worldwide, illustrating the urgent need for innovative treatment options. We identified MYT1 as a promising new therapeutic target for breast and gynecological cancer using PandaOmics, an AI-driven target discovery platform. The synthetic lethal relationship of MYT1 in tumor cell lines with CCNE1 amplification enhanced this rationale. Through structure-based drug design, we developed a series of novel, potent, and highly selective inhibitors specifically targeting MYT1. Importantly, our lead compound, featuring a tetrahydropyrazolopyrazine ring, exhibits remarkable selectivity over WEE1, a related kinase associated with bone marrow suppression upon inhibition. Optimization of potency and physical properties resulted in the discovery of compound 21, a novel MYT1 inhibitor, exhibiting optimal pharmacokinetic properties and promising in vivo antitumor efficacy.


Assuntos
Antineoplásicos , Neoplasias , Feminino , Humanos , Linhagem Celular Tumoral , Mama , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Neoplasias/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
12.
Aging Cell ; 22(12): e14017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888486

RESUMO

As aging and tumorigenesis are tightly interconnected biological processes, targeting their common underlying driving pathways may induce dual-purpose anti-aging and anti-cancer effects. Our transcriptomic analyses of 16,740 healthy samples demonstrated tissue-specific age-associated gene expression, with most tumor suppressor genes downregulated during aging. Furthermore, a large-scale pan-cancer analysis of 11 solid tumor types (11,303 cases and 4431 control samples) revealed that many cellular processes, such as protein localization, DNA replication, DNA repair, cell cycle, and RNA metabolism, were upregulated in cancer but downregulated in healthy aging tissues, whereas pathways regulating cellular senescence were upregulated in both aging and cancer. Common cancer targets were identified by the AI-driven target discovery platform-PandaOmics. Age-associated cancer targets were selected and further classified into four groups based on their reported roles in lifespan. Among the 51 identified age-associated cancer targets with anti-aging experimental evidence, 22 were proposed as dual-purpose targets for anti-aging and anti-cancer treatment with the same therapeutic direction. Among age-associated cancer targets without known lifespan-regulating activity, 23 genes were selected based on predicted dual-purpose properties. Knockdown of histone demethylase KDM1A, one of these unexplored candidates, significantly extended lifespan in Caenorhabditis elegans. Given KDM1A's anti-cancer activities reported in both preclinical and clinical studies, our findings propose KDM1A as a promising dual-purpose target. This is the first study utilizing an innovative AI-driven approach to identify dual-purpose target candidates for anti-aging and anti-cancer treatment, supporting the value of AI-assisted target identification for drug discovery.


Assuntos
Proteínas de Caenorhabditis elegans , Neoplasias , Animais , Humanos , Envelhecimento/genética , Longevidade/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inteligência Artificial , Histona Desmetilases/metabolismo
13.
Aging (Albany NY) ; 15(18): 9293-9309, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742294

RESUMO

Target discovery is crucial for the development of innovative therapeutics and diagnostics. However, current approaches often face limitations in efficiency, specificity, and scalability, necessitating the exploration of novel strategies for identifying and validating disease-relevant targets. Advances in natural language processing have provided new avenues for predicting potential therapeutic targets for various diseases. Here, we present a novel approach for predicting therapeutic targets using a large language model (LLM). We trained a domain-specific BioGPT model on a large corpus of biomedical literature consisting of grant text and developed a pipeline for generating target prediction. Our study demonstrates that pre-training of the LLM model with task-specific texts improves its performance. Applying the developed pipeline, we retrieved prospective aging and age-related disease targets and showed that these proteins are in correspondence with the database data. Moreover, we propose CCR5 and PTH as potential novel dual-purpose anti-aging and disease targets which were not previously identified as age-related but were highly ranked in our approach. Overall, our work highlights the high potential of transformer models in novel target prediction and provides a roadmap for future integration of AI approaches for addressing the intricate challenges presented in the biomedical field.


Assuntos
Idioma , Estudos Prospectivos , Bases de Dados Factuais
14.
ACS Med Chem Lett ; 14(7): 901-915, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465301

RESUMO

This microperspective covers the most recent research outcomes of artificial intelligence (AI) generated molecular structures from the point of view of the medicinal chemist. The main focus is on studies that include synthesis and experimental in vitro validation in biochemical assays of the generated molecular structures, where we analyze the reported structures' relevance in modern medicinal chemistry and their novelty. The authors believe that this review would be appreciated by medicinal chemistry and AI-driven drug design (AIDD) communities and can be adopted as a comprehensive approach for qualifying different research outcomes in AIDD.

15.
Clin Pharmacol Ther ; 114(5): 972-980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37483175

RESUMO

Drug discovery and development is a notoriously risky process with high failure rates at every stage, including disease modeling, target discovery, hit discovery, lead optimization, preclinical development, human safety, and efficacy studies. Accurate prediction of clinical trial outcomes may help significantly improve the efficiency of this process by prioritizing therapeutic programs that are more likely to succeed in clinical trials and ultimately benefit patients. Here, we describe inClinico, a transformer-based artificial intelligence software platform designed to predict the outcome of phase II clinical trials. The platform combines an ensemble of clinical trial outcome prediction engines that leverage generative artificial intelligence and multimodal data, including omics, text, clinical trial design, and small molecule properties. inClinico was validated in retrospective, quasi-prospective, and prospective validation studies internally and with pharmaceutical companies and financial institutions. The platform achieved 0.88 receiver operating characteristic area under the curve in predicting the phase II to phase III transition on a quasi-prospective validation dataset. The first prospective predictions were made and placed on date-stamped preprint servers in 2016. To validate our model in a real-world setting, we published forecasted outcomes for several phase II clinical trials achieving 79% accuracy for the trials that have read out. We also present an investment application of inClinico using date stamped virtual trading portfolio demonstrating 35% 9-month return on investment.

16.
Bioorg Med Chem ; 91: 117414, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467565

RESUMO

Salt-inducible kinase 2 (SIK2) has been recognized as a potential target for anti-inflammation and anti-cancer therapy. In this paper, based on the binding pose of the reported compound (GLPG-3970, 3) with AlphaFold protein structure, a series of hinge cores were generated via AI-generative models (Chemistry42). After the molecular docking, synthesis, and biological evaluation, a hit molecule (7f) targeting SIK2 was obtained with a novel scaffold. Further SAR exploration led to the discovery of compound 8g with superior potency against SIK2 compared with the reported inhibitors. Furthermore, 8g also demonstrated excellent selectivity over other AMPK kinases, favorable in vitro ADMET profiles and decent cellular activities. This work provides an alternative approach to the discovery of novel and selective kinase inhibitors.


Assuntos
Inibidores de Proteínas Quinases , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/química
17.
Aging (Albany NY) ; 15(11): 4649-4666, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315204

RESUMO

Aging is a complex and multifactorial process that increases the risk of various age-related diseases and there are many aging clocks that can accurately predict chronological age, mortality, and health status. These clocks are disconnected and are rarely fit for therapeutic target discovery. In this study, we propose a novel approach to multimodal aging clock we call Precious1GPT utilizing methylation and transcriptomic data for interpretable age prediction and target discovery developed using a transformer-based model and transfer learning for case-control classification. While the accuracy of the multimodal transformer is lower within each individual data type compared to the state of art specialized aging clocks based on methylation or transcriptomic data separately it may have higher practical utility for target discovery. This method provides the ability to discover novel therapeutic targets that hypothetically may be able to reverse or accelerate biological age providing a pathway for therapeutic drug discovery and validation using the aging clock. In addition, we provide a list of promising targets annotated using the PandaOmics industrial target discovery platform.


Assuntos
Perfilação da Expressão Gênica , Aprendizado de Máquina
18.
Drug Discov Today ; 28(8): 103675, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331692

RESUMO

In recent years, drug discovery and life sciences have been revolutionized with machine learning and artificial intelligence (AI) methods. Quantum computing is touted to be the next most significant leap in technology; one of the main early practical applications for quantum computing solutions is predicted to be in quantum chemistry simulations. Here, we review the near-term applications of quantum computing and their advantages for generative chemistry and highlight the challenges that can be addressed with noisy intermediate-scale quantum (NISQ) devices. We also discuss the possible integration of generative systems running on quantum computers into established generative AI platforms.


Assuntos
Inteligência Artificial , Disciplinas das Ciências Biológicas , Metodologias Computacionais , Teoria Quântica , Descoberta de Drogas
19.
J Chem Inf Model ; 63(11): 3307-3318, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171372

RESUMO

De novo drug design with desired biological activities is crucial for developing novel therapeutics for patients. The drug development process is time- and resource-consuming, and it has a low probability of success. Recent advances in machine learning and deep learning technology have reduced the time and cost of the discovery process and therefore, improved pharmaceutical research and development. In this paper, we explore the combination of two rapidly developing fields with lead candidate discovery in the drug development process. First, artificial intelligence has already been demonstrated to successfully accelerate conventional drug design approaches. Second, quantum computing has demonstrated promising potential in different applications, such as quantum chemistry, combinatorial optimizations, and machine learning. This article explores hybrid quantum-classical generative adversarial networks (GAN) for small molecule discovery. We substituted each element of GAN with a variational quantum circuit (VQC) and demonstrated the quantum advantages in the small drug discovery. Utilizing a VQC in the noise generator of a GAN to generate small molecules achieves better physicochemical properties and performance in the goal-directed benchmark than the classical counterpart. Moreover, we demonstrate the potential of a VQC with only tens of learnable parameters in the generator of GAN to generate small molecules. We also demonstrate the quantum advantage of a VQC in the discriminator of GAN. In this hybrid model, the number of learnable parameters is significantly less than the classical ones, and it can still generate valid molecules. The hybrid model with only tens of training parameters in the quantum discriminator outperforms the MLP-based one in terms of both generated molecule properties and the achieved KL divergence. However, the hybrid quantum-classical GANs still face challenges in generating unique and valid molecules compared to their classical counterparts.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Metodologias Computacionais , Teoria Quântica , Preparações Farmacêuticas
20.
Aging (Albany NY) ; 15(8): 2863-2876, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100462

RESUMO

Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential therapeutic targets that are associated with both conditions as concurrent drivers. In this work, we present a multi-angled approach of identifying targets, which takes into account not only the disease-related genes but also the ones important in aging. For this purpose, we developed three strategies of target identification using the results of correlation analysis augmented with survival data, differences in expression levels and previously published information of aging-related genes. Several studies have recently validated the robustness and applicability of AI-driven computational methods for target identification in both cancer and aging-related diseases. Therefore, we leveraged the AI predictive power of the PandaOmics TargetID engine in order to rank the resulting target hypotheses and prioritize the most promising therapeutic gene targets. We propose cyclic nucleotide gated channel subunit alpha 3 (CNGA3), glutamate dehydrogenase 1 (GLUD1) and sirtuin 1 (SIRT1) as potential novel dual-purpose therapeutic targets to treat aging and GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Envelhecimento/genética , Inteligência Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...